9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 数学 >>

数列问题常见题型剖析

数列问题常见题型剖析


数列问题常见题型剖析
(甘肃省岷县岷州中学 常全全)

数列是高中数学的重要组成部分之一,涉及的知识面较广,包含着一些重要的数学思想方法, , 在现实生活中也有广泛的应用。可以和函数,不等式,平面向量,极限等知识结合进行考查,所以 数列的综合性问题较多,掌握数列知识对高中数学在整体上的理解有很大的帮助。 数列在高考中所占的分值较大,而且每年必考。我对近几年的高考数学试题进行了收集,归纳 了在高考中常见的数列问题,并对这些问题做了分析之后,总结出了以下一些解决的基本方法。现 将其列举如下: 1,常见的数列求和问题的基本方法 (1) 裂项法:当一个数列的各项裂开成几项的和或差之后,相邻的两项或者几项存在可以相互 可以抵消的部分时,可以采用裂项的方法对此数列进行求和运算。 例 1:已知数列 ?an ? 的前 n 项和为 Sn , an ? 解析: Sn ? a1 ? a2 ? a3 ?

1 ,求 Sn ; n ? n ? 1?

? an

1 1 1 2 ? ? ? ? 1? 2 2 ? 3 3 ? 4 n ? n ? 1? 1 ? ? 1? ?1 1? ?1 1? ?1 ? ?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2? ? 2 3? ? 3 4? ? n n ?1 ? 1 1 1 1 1 1 1 ? 1? ? ? ? ? ? ? ? 2 2 3 3 4 n n ?1 1 n ? 1? ? n ?1 n ?1 ?
评析:本题是一道非常典型的裂项求和问题,在这道题的基础上,我们可以将其进行拓 应用,从而求更多一些其他的裂项求和问题。 例如: an ?

1 1 . ? ? n ? 1?? n ? 1? n ? 1 n ? 1 1 1 1 bn ? ? ? ? n ? 1?? n ? 2?? n ?1? ? n ? 1?? n ? 2? ? n ?1?? n ? 2? =

2

注:在裂项法求和时,要特别注意前面几项与后面几项的剩余部分是那些,必须要做到不 漏掉任何一项。 (2) 分组求和法:当一个数列的通项是由几种具有不同类型的数列通项相加组合而成时,可以 采用分组的方法对此数列进行求和。 例 2:已知数列 ?an ? 的前 n 项和为 Sn , an ? n ? 2 ,求 Sn ;
n

解析: Sn ? a1 ? a2 ? a3 ?

? an

? ?1 ? 21 ? ? ? 2 ? 22 ? ? ? 3 ? 22 ? ?

? ? n ? 2n ?

? ?1 ? 2 ? 3 ? ? n ? ? ? 21 ? 22 ? 23 ? n n ?1 ? n ? 2 1 ? 2 ? ? 2 1? 2 n n ? 1 ? ? ?2 ? 2n?1 ? 2

?

?

2n ?

评析:在本题中前一部分是等差数列,后一部分是等比数列,所以将其进行了分组求和。

2 ? 2n ? 2n ? 1 时,我们可以将其看成是三个不同数列的求和(其中三 n ? n ? 1? 2 个数列分别为 bn ? , cn ? 2n , en ? 2n ? 1 )采用分组方法求数列 an 的前 n 项和 Sn ; n ? n ? 1?
例如当 an ? (3) 错位相减法:当一个数列的通项是由等差数列与等比数列相乘组合而成时,可以采用错位 相减的方法进行求和。 例 3:已知数列 ?an ? 的前 n 项和为 Sn , an ? ? 2n ?1? 2 ,求 Sn ;
n

解析:∵ Sn ? a1 ? a2 ? a3 ?

? an
n

1 2 3 ∴ Sn ? 3 ? 2 ? 5 ? 2 ? 7 ? 2 ?

? ? ? ? ? ?? ?? 2n ? 1? 2 ? ? 2S ? ? 3 ? 2 ? ? ? 5 ? 2 ? ? ? 7 ? 2 ? ? ? ? ?? 2n ? 1? 2 ? ? ? 2 ?1 ? 2 ? ? ??? ? ? 6 ? 2? ? 2n ? 1??2 ?1? 2 2 2? 2 ? ? ? 2 ??? 2n ? ①-②得: ? S ? ? 3 ? 2?? ? 2 ? 1 ? ? ? ?
2 3 4 n ?1 n

?

① ②
n ?1

2

n ?1

1

2

3

n

n ?1

n

? ?

? 2n ? 2 ? n2n ? 2 ? 2n ?1 ? 2
∴ S n ? ? n ?1? 2
n? 2
n?2 ? ?1 ? ? 2n ?1 ? 2 n? 1 n? 2 ?2 ?2

评析:本题①-②时,是用①式的第二项减②式的第一项,逐项相减,得到的结果恰好是个 等比数列,从而进行求和。 总结:数列的求和是一个非常具有难度的问题,仅仅依靠以上方法是远远不够的,例如,数列

an ? n2 , an ? n3 等都是一些非常典型的特殊数列,对它们的求和要用到积分的方法,这就要求
我们在习的过程中,多研究,多总结。 2,已知数列 ?an ? 的前 n 项和 Sn ,求其通项公式 an 的基本方法

? ? n ? 1? ? S an ? ? 1 ? an得: ? n ? 2? ? ? Sn ? Sn ?1 2 例 4:已知数列 ?an ? 的前 n 项和 Sn ? n ? 3n ,求 an ;

由Sn ? a1 ? a 2 ? a 3?

解析:∵ 数列?an ?的前n项和Sn ? n ? 3n
2

∴ 当n ? 1 时,a1 ? S1 ? 4 当 n ? 2 时, an ? Sn ? S n?1

? n 2 ? 3n ? ? n ? 1? ? 3 ? n ? 1?
2

? 2n ? 2
又∵ a1 ? 4 ? 2 ?1 ? 2
* ∴ a n ? 2n ? 2 n ? N

?

?

? ? n ? 1? ? 4?C ? ? 2n ? 2 ? n ? 2 ? 3,已知数列 ?an ? 的递推公式,求其通项公式 an 的基本方法
所以数列 ?an ? 的通项公式 an ? ? (1) 已知 an?1 ? an ? d (常数) ,求 an ;

评析:本题中若 Sn ? n2 ? 3n ? C(非零常数) ,则 当n ? 1 时,a1 ? S1 ? 4 ? C ? 2 ?1 ? 2 ,

a ?a ? d 解析:∵ ? an? 12? an1 ? d
∴?

? a ?a ? d ? 3 2 ?

将这 n ? 1 个式子两边分别相加

? 得 ? ?1? d ann ? ?a a1n ? ?nd 1 ? ?a
∴ an ? a1 ? ? n ?1? d 评析:当 an?1 ? an ? f ? n ? 时,求通项 an 的方法与以上方法一样,但是一般情况下 f ? n ? 是个可以有通法求和的数列。 (2) 已知 an?1 ? Aan ? f ? n ? ,求 an ;(其中 A 为常数) 解析:当 f ( n) 为常函数时,即 f (n) ? B (常数)时,将其配凑成 an?1 ? C ? A? an ? C ? 的 形式,然后令 bn ? an ? C 变换成 bn?1 ? Abn 进行求解。 当 f ( n) 为一次函数或二次函数时,将其配凑成 an?1 ? g ? n ?1? ? A an ? g ? n? 的形式, 然后令 bn ? an ? g ? n? 变换成 bn?1 ? Abn 进行求解(其中的 g ? n ? 是相应的一次函数或者 而此次函数) 。 当 f ( n) 为指数函数时,将其配凑成

?

?

bn ?

an g ? n?

an?1 a ,然后令 ? B n 的形式(其中 B 为常数) g ? n ? 1? g ?n? 变换成 bn?1 ? Bbn 进行求解。 (其中的 g ? n ? 为相应的指数函数)

例 5:已知 an?1 ? 2an ? n2 ,且 a1 ? 2 ,求 an ; 解析:∵ an?1 ? 2an ? n2 ∴设 an ?1 ? A ? n ? 1? ? B ? n ? 1? ? C ? 2 an ? An ? Bn ? C
2 2

?

?

? A ?1 ? ∴ ?B ? 2 A ? 0 解得: A ? 1, B ? 2, C ? 3 ?C ? A? B ? 2 0 2 ? ∴ an ?1 ? ? n ? 1? ? 2 ? n ? 1? ? 3 ? 2 ? an ? n ? 2n ? 3?
∴令 bn ? an ? n ? 2n ? 3 ,则 bn?1 ? 2bn
2

则 an?1 ? 2an ? An ? ? B ? 2 A? n ? C ? A ? B
2

又∵ b1 ? a1 ? 1 ? 2 ? 3 ? 8

∴ ?bn ? 是以 8 为首项, 2 为公比的等比数列。 ∴ bn ? 8 ? 2n?1 ? 2n?2 ∴ an ? 2n?2 ? n2 ? 2n ? 3 例 6:已知 an?1 ? 2an ? 3n?1 ,且 a1 ? 3 ,求 an ; 解析:∵ an?1 ? 2an ? 3n?2

an ?1 2an an ?1 2 an ? n ?1 ? 3 , 即 n ? ?3 n ?1 3 3 3 ?1 3 3n an 2 令 bn ? n , 则 bn ?1 ? bn ? 3 3 3 2 2 1 设 bn ?1 ? A ? ? bn ? A ? 则 bn ?1 ? bn ? ? A 3 3 3 1 2 ∴ ? A ? 3 ∴ A ? ?9 ∴ bn ?1 ? 9 ? ? bn ? 9 ? 3 3 a 2 令 cn ? bn ? 9 则 cn ?1 ? cn ∵ c1 ? b1 ? 9 ? 1 ? 9 ? ?8 3 3 2 ∴ ?cn ? 是以 ?8 为首项, 为公比的等比数列 3 n ?1 2n ? 2 ?2? ∴ cn ? ?8 ? ? ? ? ? n?1 3 ?3? ? 2n ? 2 2n ? 2 ? ∴ bn ? cn ? 9 ? 9 ? n ?1 ∴ an ? 3n ? 9 ? n ?1 ? ? 3n ? 2 ? 3 ? 2n ? 2 3 3 ? ? an?1 (3) 已知 q2(q ? 0, q ? 1) ,求 an ; ?? a ?q an ? a a 1 解析:∵ ? n ?1 ? q ?an a3 ?q ? ∴ ? a2 将这 n ? 1 个式子两边分别相乘 ?a ? n ? q n ?1 ∴ an ? a1q n?1 得 ? a1an an ?1 ? q 评析:当 ? 时,求通项 an 的方法同上,但是一般情况之下题目中的 f ( n) 是可 1 f ? n? ?aan ?? n 以有通法求前 n 项之积的数列。
∴ 总结:数列递推公式向通项公式的转化问题中,核心思想是必须要寻找到一个整体,使得对其进行 整体代换后变得比较简单,进而可以求解其通项公式。 参考文献: [1] 任志鸿.十年高考.分析解析与应试策略.数学.(2001~2010).南方出版社 [2] 叶军.数学奥林匹克教程.湖南师范大学出版社 [3] 贾凤山.成才之路.新课标数学选修 2-1.光明日报出版社


推荐相关:
网站首页 | 网站地图
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com