9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 数学 >>

2017年高中数学人教A版选修1-1课件:3.3.3习题课+导数的综合应用

2017年高中数学人教A版选修1-1课件:3.3.3习题课+导数的综合应用


习题课——导数的综合应用 -1- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 学 习 目 标 思 维 脉 络 1.掌握利用导数 研究方程的根或 函数零点的一般 方法. 导数综合应用 2.掌握利用导数 研究方程的根或函数的零点 解决不等式恒成 解决不等式恒成立问题 立问题的基本方 研究函数综合问题 法. 3.掌握利用导数 研究函数综合问 题的方法. -2- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 1 2 1.利用导数研究方程的根或函数零点 (1)方程f(x)=0的根就是函数f(x)的零点,亦即f(x)图象与x轴交点的 横坐标; (2)方程f(x)=a的根就是函数g(x)=f(x)-a的零点,亦即f(x)图象与直线 y=a交点的横坐标; (3)方程f(x)=g(x)的根就是函数h(x)=f(x)-g(x)的零点,亦即f(x)图象与 g(x)图象交点的横坐标. -3- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 1 2 2.利用导数解决不等式恒成立问题 (1)不等式λ≥f(x)恒成立,则λ≥[f(x)]max; (2)不等式λ≤f(x)恒成立,则λ≤[f(x)]min. 做一做1 方程x3-6x2+9x-4=0实根的个数为 ( ) A.0 B.1 C.2 D.3 解析利用导数,求出函数的极大值为0,极小值为-4,再结合函数的单 调性,通过数形结合可得. 答案C -4- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 1 2 做一做2 已知函数 f(x)=x3- x2-2x+5,若当x∈[-1,2]时,f(x)<m恒成 2 立,则实数m的取值范围为 ( ) A.[7,+∞) B.(7,+∞) C.(-∞,7) D.(-∞,7] 解析利用导数可求得x∈[-1,2]时,f(x)max=7,所以实数m的取值范围 为m>7. 答案B 1 -5- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 1 2 做一做 3 若函数 f(x)=x 2 lnx -2ex- x +m 至少有一个零点,则实数 m 的取值范围是 . 1-lnx 2x 2 (x -e )-(1-lnx ) 解析 函数定义域为(0,+∞),f'(x)=2x-2e- x 2 = , x2 令 f'(x)=0 得 x=e, 且 f(x)在(0,e)上递减,在(e,+∞)上递增, 从而 f(x)在 x=e 取得极小值亦即最小值 f(e)=-e2-e +m, 因此 f(x)至少有一个零点时,应满足-e2- +m≤0,解得 m≤e2+ . 答案 m≤e2+e 1 1 e 1 e 1 -6- 习题课——导数的综合应用 首页 X 新知导学 D答疑解惑 INZHIDAOXUE AYIJIEHUO D当堂检测 ANGTANGJIANCE 1 2 做一做 4 设函数 f(x)= x2ex. 1 2

推荐相关:
网站首页 | 网站地图
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com