9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 数学 >>

最新高三教案-2018年高中总复习第二轮数学第一部分专题三3.2三角函数的综合运用 精品

最新高三教案-2018年高中总复习第二轮数学第一部分专题三3.2三角函数的综合运用 精品

§3.2 三角函数的综合运用 考情动态分析
本节主要复习三角函数式的最值、三角函数在三角形中的应用以及以三角函数为工具解 决一些实际问题.
求三角函数式的最值,常见的方法有化为一个角的一个三角函数的形式,与二次函数相结 合,利用三角函数的有界性,利用函数的单调性,以及常见的求函数最值的方法等.
对三角形中问题的复习,主要是正、余弦定理以及解三角形,要掌握基本知识、概念、公 式,理解其中的基本数量关系,对三角形中三角变换的综合题要求不必太难.
总之,在复习中,要立足基本公式;在解题时,要注意条件与结论的联系;在变形过程中,要 不断寻找差异,讲究算理.通过本节复习掌握三角函数综合问题的一般解法,以适应高考. 考题名师诠释 【例 1】(2005 全国高考Ⅰ,19)△ABC 中,内角 A,B,C 的对边分别为 a,b,c,已知 a,b,c 成等
比数列,且 cosB= 3 . 4
(Ⅰ)求 cotA+cotC 的值;

BC (Ⅱ)设 BA ·

= 3 ,求 a+c 的值.

2

分析:a,b,c 分别为△ABC 内角 A,B,C 的对边,且 a,b,c 成等比数列,易知求解中要用到正弦 定理;求 cotA+cotC 的值,首先应该对其适当变形,变形时,既可用同角三角函数的关系式, 也可用三角形的边角关系,然后根据变形后的具体形式计算.第(Ⅱ)问涉及平面向量的数量 积,可以先得到 ac 的值,再由余弦定理计算出 a2+c2,即可得 a+c 的值.

解法 1:(Ⅰ)由 cosB= 3 得 sinB 4

= 1? (3)2 =

7
.

44

由 b2=ac 及正弦定理得 sin2B=sinAsinC,

于是 cotA+cotC

1

1 cos A cosC

=

+

=

+

tan A tan C sin A sin C

sin C cos A ? cosC sin A sin(A ? C)

=

sin Asin C

= sin 2 B

=

sin B sin 2 B

?

1 sin B

?

4 7

7.

BA BC (Ⅱ)由

·

= 3 得 ca·cosB= 3 .

2

2

由 cosB= 3 ,可得 ca=2,即 b2=2. 4
由余弦定理 b2=a2+c2-2ac·cosB, 得 a2+c2=b2+2ac·cosB=5, (a+c)2=a2+c2+2ac=5+4=9,
所以 a+c=3.

解法 2:(Ⅰ)由 cosB= 3 得 sinB 4

= 1? (3)2 =

7
.

44

由 a,b,c 成等比数列知 b2=ac, 由正弦定理得 sin2B=sinAsinC. 如右图,AC 边上的高为 BD.

AD DC b
cotA+cotC= + = .
BD BD BD

又 BD=csinA=asinC,

则 BD2=acsinAsinC=b2sin2B,

因此 cotA+cotC=

b

4 = 7.

b sin B 7

BA BC (Ⅱ)由

·

= 3 得 cacosB= 3 得,则 ac=2.

2

2

由余弦定理 b2=a2+c2-2accosB, 且 b2=ac, 所以 ac=a2+c2-3, (a+c)2=a2+c2+2ac=3ac+3=9. 则 a+c=3. 点评:本题将三角函数、等比数列及向量知识有机结合,并不单纯考查对三角函数的恒等变

形知识的掌握,而是通过三角形的边角关系,同时考查正弦定理和余弦定理.这样一道题涵 盖了三角函数部分的大部分内容,而且计算并不繁琐,在考查基础知识的基础上注重对数学

思想和方法的考查,注重对数学能力的考查,同时兼顾基础性和综合性,坚持多角度的考查,

全面考查综合数学素养的要求. 本题难易适中,容易入手,只要熟练掌握了三角函数的基础知识,就可以做出本题的大

部分.所以复习时关键在于对基础知识的掌握,然后才是综合分析及灵活运用知识能力的培 养.

m n m 【例 2】(2006 山东烟台高三诊测,18)已知函数 f(x)= · ,其中 =(sinω x+cosω

n x, 3 cosω x), =(cosω x-sinω x,2sinω x)(ω >0).若 f(x)相邻两对称轴间的距离不小于 ? . 2
(1)求ω 的取值范围;
(2)在△ABC 中,a、b、c 分别是角 A、B、C 的对边,a= 3 ,b+c=3(b>c),当ω 最大时,f(A)=1,

求边 b,c 的长.
分析:(1)应先求出 f(x)的解析式,相邻两对称轴间的距离为 T ,从而可得出ω 的不等式.(2) 2
由ω 的范围得出ω 的最大值,确定 f(x)的解析式.由 f(A)=1 求出 A 的值,再利用余弦定理得 出 a、b、c 的关系.

m n 解:(1)f(x)=

· =cos2ω x-sin2ω x+2 3 sinω xcosω x=cos2ω x+ 3 sin2ω x

?
=2sin(2ω x+ ).
6

∵f(x)相邻两对称轴间的距离不小于 ? ,∴ ? ≥ ? , 2 2? 2

∴0<ω ≤1.

(2)当ω 最大时,ω =1,∴f(x)=2sin(2x+ ? ), 6

∵f(A)=1,∴2sin(2A+ ?

)=1,又 ?

?
<2A+

7
<

π

,∴2A+ ?

5
=

π

,∴A= ?

.

6

6

66

66

3

在△ABC 中,3=b2+c2-2bccos ? ,∴b2+c2-bc=3,又 b+c=3,(b>c)∴b=2,c=1 3

评述:①三角与向量联系紧密,应予以关注;②在解三角形问题中,要善于利用正、余弦定

理进行边角互化.

【例 3】(理)(2004 浙江高考,17 理)在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,且 cosA= 1 . 3
B?C (1)求 sin2 2 +cos2A 的值;

(2)若 a= 3 ,求 bc 的最大值.
B?C 解:(1)sin2 2 +cos2A

= 1 [1-cos(B+C)]+(2cos2A-1) 2
= 1 (1+cosA)+(2cos2A-1) 2 1 12 1
= (1+ )+ -1=- .
2 39 9

(2)∵ b2 ? c 2 ? a 2 =cosA, 2bc

∴ 2 bc=b2+c2-a2≥2bc-a2. 3

∴bc≤ 3 a2.∵a= 3 ,∴bc≤ 9 .

4

4

当且仅当 b=c= 3 时,bc= 9 .

2

4

故 bc 的最大值是 9 . 4

评述:本题主要考查三角函数的诱导公式、倍角公式、余弦定理及均值不等式等基础知识,

考查运算能力.

(文)(2006 山东烟台 5 月适应性训练)已知向量 a=(sin(θ -x),1),b=(1,-sin(θ +x)).

(1)当 x∈R 时,恒有 a⊥b 成立.求角θ 的值;

(2)若 f(x)=a·b+2cosθ 的最大值为 0,且 sin2θ = 3 ,θ ∈(- 3 π ,π ),求 cosθ 的值.

5

4

a b 解析:(1)由题意,知 · =0,∴sin(θ -x)-sin(θ +x)=0,∴cosθ ·sinx=0.k∈R,

∴cos(θ

-x)=0,从而θ

=kπ

?
+

(k∈Z).

2

(2)f(x)=-2cosθ sinx+2cosθ =2cos(1-sinx),∵f(x)的最大值为 0.而 1-sinx≥0,cosθ <0 又 sin2θ

=2sinθ cosθ >0,∴cosθ ≤0,sinθ <0,从而θ 在第三象限,∴θ ∈(- 3 π ,- ? ),2θ ∈(- 3 π ,-

42

2

π ),

∴cos2θ =- 4 ,cosθ = ?

1 ? cos 2? ? ?

10
.

5

2

10

评述:这类题要能够熟记公式,仔细运算.解题时,要注意确定三角函数值的符号.

【例 4】若 f(x)=1-2a-2acosx-2sin2x 的最小值为 f(a).

(1)用 a 表示 f(a)的表达式;

(2)求能使 f(a)= 1 的 a 值,并求当 a 取此值时 f(x)的最大值. 2
解:(1)f(x)=1-2a-2acosx-2sin2x

=1-2a-2acosx-2+2cos2x

=2(cosx- a )2- 1 a2-2a-1. 22

①当 a >1,即 a>2 且 cosx=1 时,f(x)取得最小值,即 f(a)=1-4a; 2

②当-1≤ a ≤1,即-2≤a≤2 且 cosx= a 时,f(x)取得最小值,即 f(a)=- 1 a2-2a-1;

2

2

2

③当 a <-1,即 a<-2 且 cosx=-1 时,f(x)取得最小值,即 f(a)=1; 2

综上得

?1 ? 4a,

f(a)=

???? ?

1 2

a2

?

2a

? 1,

??1,

a ? 2, ? 2 ? a ? 2, a ? ?2.

(2)若 f(a)= 1 ,则 a 只能在[-2,2]内. 2

∴- 1 a2-2a-1= 1 ,得 a=-1,此时 f(x)=2(cosx+ 1 )2+ 1 ;当 cosx=1 时,f(x)有最大值 5.

2

2

22

评述:用配方法来解关于 sinx 或 cosx 的二次三项式的最大(小)值问题,是一种常用的方

法,但必须注意 sinx 或 cosx 的值域.精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有

精品推荐 强力推荐 值得拥有


推荐相关:

...攻略专题三平面向量三角函数三角形3.2三角函数的图....ppt

2018年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形3.2三角函数的图象与性质课 - 考点 1 三角函数的定义、诱导公式及基本关系 1.三角函数:设...


...平面向量、三角函数、三角形 3.2 三角函数的图象与....ppt

2018年高考数学二轮总复习 第一部分 专题攻略 专题三 平面向量、三角函数、三角形 3.2 三角函数的图象与性 - 考点 1 三角函数的定义、诱导公式及基本关系 1....


2018届高考数学二轮复习第一部分专题三三角函数及解三....doc

2018届高考数学二轮复习第一部分专题三三角函数及解三角形1.3.2三角恒等变换与解三角形限时规范训练理_高考_高中教育_教育专区。限时规范训练 三角恒等变换与解三角...


2018届高考数学二轮复习第二部分专题三三角3.3.2三角变....ppt

2018届高考数学二轮复习第部分专题三三角3.3.2三角变换与课件 - 3.3.2 三角变换与解三角形 -2- 正弦、余弦定理与三角形面积的综合问题 3 例1(2017北京,...


...第一部分 专题三 三角函数及解三角形 1.3.2 三角恒....doc

【推荐精选】2018届高考数学二轮复习 第一部分 专题三 三角函数及解三角形 1.3.2 三角恒等变换与解三角形限_其它课程_高中教育_教育专区。推荐精选 K12 资料 ...


2018届高三数学二轮复习 第一篇 专题突破 专题三 三角....ppt

2018高三数学二轮复习 第一篇 专题突破 专题三 三角函数与解三角形刺 第2讲 三角恒等变换与解三角形教案 _数学_高中教育_教育专区。第2讲 三角恒等变换与解...


最新高三教案-高考数学专题复习讲练测专题三三角函....doc

最新高三教案-高考数学专题复习讲练测专题三三角函数专题复习讲练3解三角形的综合问题 精品_高考_高中教育_教育专区。§ 3 解三角形的综合问题一、复习要点 ...


2018届高考数学二轮复习第1部分专题三三角函数及解三角....doc

2018届高考数学二轮复习第1部分专题三三角函数及解三角形1_3_2三角恒等变换


...专题复习:第一部分专题三三角函数及解三角形1-3-2-....doc

2018-2019学年高考数学(理)二轮专题复习:第一部分专题三三角函数及解三角形1-3-2-含答案_高考_高中教育_教育专区。限时规范训练九 限时45分钟,实际用时 三角...


2018届高考数学二轮复习第二部分专题三三角3.3.1三角大....ppt

2018届高考数学二轮复习第部分专题三三角3.3.1三角大题课件_高考_高中教育_教育专区。3.3 三角大题 -2- 年份 卷别 设问特点 涉及知识点 题目 类型 数学思...


...第1部分 专题三 三角函数及解三角形 1-3-2 三角恒等....doc

【推荐精选】2018届高考数学二轮复习 第1部分 专题三 三角函数及解三角形 1-3-2 三角恒等变换与解三角形限_其它课程_高中教育_教育专区。推荐精选 K12 资料 ...


2019年高考数学大二轮复习专题三三角函数3-2三角变换与....doc

2019年高考数学二轮复习专题三三角函数3-2三角变换与解三角形练习 - 中小学教育教学资料 3.2 三角变换与解三角形 【课时作业】 A级 1.(2018全国卷Ⅱ)在...


...训练:第一部分 专题三 三角函数及解三角形 1-3-2 .doc

2人阅读|次下载 2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题三 三角函数及解三角形 1-3-2 _高三数学_数学_高中教育_教育专区。限时45分钟,实际...


2018年高考数学二轮复习第二部分专题二三角函数与平面....doc

2018年高考数学二轮复习第部分专题三角函数与平面向量第3讲平面向量课时规范练理20171204242_高考_高中教育_教育专区。内部文件,版权追溯 内部文件,版权追溯 第3...


2019届高考数学大二轮复习精品练习:第1部分 专题3 三角....doc

2019届高考数学二轮复习精品练习:第1部分 专题3 三角函数及解三角形 第2讲 Word版含解析 - 精选中小学试题、试卷、教案资料 第一部分 专题三 第二讲 A组 ...


2018年高考数学二轮复习第一部分专题三数列第一讲等差....doc

2018年高考数学二轮复习第一部分专题三数列第一讲等差数列等比数列教案_高考_高中教育_教育专区。第一讲 等差数列、等比数列 [考情分析] 等差数列、等比数列的判定...


2018年高考数学二轮复习专题3三角函数及解三角形第2讲....doc

2018年高考数学二轮复习专题3三角函数及解三角形第2讲三角恒等变换与解三角形课后强化训练_高考_高中教育_教育专区。内部文件,版权追溯 专题三 第二讲 三角恒等变换...


2018届高三专题复习专题二 三角函数与平面向量.doc

2018高三专题复习专题二 三角函数与平面向量_数学_高中教育_教育专区。专题二 三角函数与平面向量第 1三角函数的图象与性质高考定位 三角函数的图象与性质是...


(浙江版)2018高考数学二轮复习-专题1.3-三角函数与平面....doc

(浙江版)2018高考数学二轮复习-专题1.3-三角函数与平面向量教学案_高考_高中教育_教育专区。( 专题1.3 三角函数与平面向量 考点 【考情动态】 最新考纲 5 年...


...轮总复习第3章三角函数解三角形3.2同角三角函数的基....ppt

2018版高考数学一总复习第3章三角函数解三角形3.2同角三角函数的基本关系式与诱导公式模拟演练课件理_高考_高中教育_教育专区。[A 级 基础达标](时间:40 ...

网站首页 | 网站地图
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com