9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 其它课程 >>

西方经济学习题

西方经济学习题


西方经济学习题库
第二章 弹性理论计算题
1.已知某一时期内某商品的需求函数为 Qd=50-5P,供给函数为 Qs=-10+5p。 (1) 求均衡价格 Pe 和均衡数量 Qe ,并作出几何图形。P35 解:Qd=Qs Qe=20 (2) 假定供给函数不变, 由于消费者收入水平提高, 使需求函数变为 Qd=60-5P。 求出相应的均衡价格 Pe 和均衡数量 Qe,并作出几何图形。 (3) 60-5p= -10+5p Qe=25 (4) 假定需求函数不变,由于生产技术水平提高,使供给函数变为 Qs=-5+5p。 求出相应的均衡价格 Pe 和均衡数量 Qe,并作出几何图形。 (5) 50-5p=5p-5 Qe=22.5 2 假定表 2—5 是需求函数 Qd=500-100P 在一定价格范围内的需求表: 某商品的需求表 价格 (元) 1 需求量 400 2 300 3 200 4 100 5 0 pe=5.5 P35 pe=7 P35 50-5p=-10+5p pe=6

(1)求出价格 2 元和 4 元之间的需求的价格弧弹性。 Ed= - (P1+P2)/(Q1+Q2)*(Q2-Q1)/(P2-P1) Ed= -(2+4)/(300+100)*(100-300)/(4-2)=1.5 (2)根据给出的需求函数,求 P=2 是的需求的价格点弹性。 解: Ep= -f’(p)*(P/Q)= -(-100)*(2/300)=0.67

假定下表是供给函数 Qs=-2+2P 在一定价格范围内的供给表。 3.某商品的供给表 价格 (元) 2 供给量 2 3 4 4 6 5 8 6 10

(1) 求出价格 3 元和 5 元之间的供给的价格弧弹性。 解:Es=(Qs2-Qs1)/(P2-P1)*(P1+P2)/(Qs1+Qs2)

=(8-4)/(5-3)*(3+5)/(4+8)=4/3=1.33 (2) 根据给出的供给函数,求 P=3 时的供给的价格点弹性。 解: Es=f’(p)*(P/Qs)=2*(3/4)=1.5 4. 假定某消费者关于某种商品的消费数量 Q 与收入 M 之间的函数关系为 M=100Q^2。求:当收入 M=6400 时的需求的收入点弹性 解: Q=1/10*(M^(1/2)) 6400=100*Q^2 Q=8 Em=f’(M)*(M/Q)=1/20*(M^(-1/2))*(6400/8) =1/20*(1/80)*800=0.5 5. 假定需求函数为 Q=MP-N,其中 M 表示收入,P 表示商品价格,N(N>0)为常 数。求:需求的价格点弹性和需求的收入点弹性。 解: 需求的价格点弹性: Ep= -f’(p)*(P/Q)

需求的收入点弹性:Em=f’(M)*(M/Q) 6. 假定某消费者的需求的价格弹性 Ed=1.3,需求的收入弹性 Em=2.2 。求: (1 ) 在其他条件不变的情况下,商品价格下降 2%对需求数量的影响。 解:P 下降 2%,Q 增加 1.3*2%=2.6% (2)在其他条件不变的情况下,消费者收入提高 5%对需求数量的影响。 解:M 提高 5%, Q 增加 2.2*5%=11% 7 假定某市场上 A、B 两厂商是生产同种有差异的产品的竞争者;该市场对 A 厂 商的需求曲线为 PA=200-QA,对 B 厂商的需求曲线为 PB=300-0.5×QB ;两厂商 目前的销售情况分别为 QA=50,QB=100。 求: (1)A、B 两厂商的需求的价格弹性分别为多少? 解:EpA= -f’(p)*(P/Q)=-(-1)*(150/50)=3 EpB= -f’(p)*(P/Q)=-(-2)*(250/100)=5 (2) 如果 B 厂商降价后,使得 B 厂商的需求量增加为 QB=160,同时使竞争对 手 A 厂商的需求量减少为 QA=40。那么,A 厂商的需求的交叉价格弹性 EAB 是多 少? 解:Exy=((Qx1-Qx2)/(Py1-Py2))*((Py1+Py2)/(Qx1+Qx2)) EAB=((40-160)/(160-220))*((160+220)/(40+160))=3.8 (3) 如果 B 厂商追求销售收入最大化,那么,你认为 B 厂商的降价是一个正确 的选择吗? 降价前=100*250=25000

降价后=160*220=35200 是一个正确的选择 8.阐述需求的价格弹性的大小与厂商的销售收入之间的关系,并举例加以说明。 解:1.Ep>1 (1) p 上升,TR 下降 (2)p 下降,TR 上升 2.Ep<1 (1) p 上升,TR 上升下降 (2)p 下降,TR 下降 P42

第三章习题
1、已知一件衬衫的价格为 80 元,一份肯德鸡快餐的价格为 20 元,在某消费者 关于这两种商品的效用最大化的均衡点上,一份肯德鸡快餐对衬衫的边际替代 率 MRS 是多少? 解:MRS 肯衬=MU 肯/MU 衬=P 肯/P 衬=20/80=0.25 2 假设某消费者的均衡如图 1-9 所示。其中,横轴 OX1 和纵轴 OX2,分别表示商 品 1 和商品 2 的数量,线段 AB 为消费者的预算线,曲线 U 为消费者的无差异曲 线,E 点为效用最大化的均衡点。已知商品 1 的价格 P1=2 元。 (1)求消费者的收入; 解: (2)求上品的价格 P2; (3)写出预算线的方程; (4)求预算线的斜率; (5)求 E 点的 MRS12 的值。 3.已知某消费者每年用于商品 1 和的商品 2 的收入为 540 元,两商品的价格分
2 别为 P1=20 元和 P2=30 元,该消费者的效用函数为 U ? 3X1 X 2 ,该消费者每年购

买这两种商品的数量应各是多少?从中获得的总效用是多少? 解:MU1=3X2^2 MU2=6X1*X2 MU1/P1=MU2/P2 3X2^2/20=6X1*X2/30 X2=4/3*X1 20X1+30X2=540 X1=9, X2=12 TU=3*9*12^2=3888 4、假定某消费者的效用函数为 U ? q 0.5 ? 3M ,其中,q 为某商品的消费量,M 为 收入。求: (1)该消费者的需求函数; 解:MU=0.5*q^(-0.5)

MU/P=du/dm 0.5*q^(-0.5)/p=3 q=1/36*p^(-2) (2)该消费者的反需求函数; 解:P=1/6*q^(-1/2) 1 (3)当 p ? ,q=4 时的消费者剩余。P65 12 解:消费者剩余=对 p=f(Q)从 0 到 4 积分 - pq =2/3-1/12*4=1/3

第四章生产者理论
1.(1)利用短期生产的总产量(TP) 、平均产量(AP)和边际产量(MP)之间 的关系,可以完成对该表的填空,其结果如下表: 可变要素的总产 可变要素平均产 可变要素的边际 可变要素的数量 量 量 产量 1 2 2 2 2 12 6 10 3 24 8 12 4 48 12 24 5 60 12 12 6 66 11 6 7 70 10 4 8 70 8.75 0 9 63 7 -7 2.用图说明短期生产函数 Q=F(L)的总产量函数、 平均产量 (AP) 和边际产量 (MP) 之间的关系。P(74) 3. 已知生产函数 Q ? f ( L, K ) ? 2KL ? 0.5L2 ? 0.5K 2 , 假定生产者处于短期,且 K=10, (1)写出短期中该厂商关于劳动的短期总产量函数,平均产量(AP)和边际产 量(MP) Q=20L-0.5L^2-50 AP=20-0.5L-50/L MP=20-L (2)分别计算当劳动的总产量(TP) 、平均产量(AP)和边际产量(MP)各自 达到最大值时厂商的劳动投入量 TP=Q Q’=20-L=0 L=20 AP=MP: L=10 MP:L=0 (3)什么时候劳动的平均产量(AP)和边际产量(MP)相等。它的值又是多少? AP=MP: L=10

4.已知生产函数 Q ? 5L K ,(1)求厂商的长期扩展线。 (2)当劳动和资本的价格均为 1,Q=1000 时,厂商实现最小成本的要素投入组 合。 MPL/PL=MPK/PK 5/3L-2/3K2/3/1=10/3L1/3K -1/3/1 K=2L Q=5*2^(2/3)*L=1000 L=126 K=252 5.已知某企业的生产函数为 Q ? L K ,劳动的价格 w=2,资本价格 r=1.求 (1)当成本 C=3000 时,企业实现最大产量时的 L,K 和 Q 的均衡值 MPL/PL=MPK/PK 2/3L-1/3K1/3/2=1/3L2/3K -2/3/1 K=L C=2L+K=3L=3000 K=L=1000 Q=1000 (2)当产量 Q=800 时,企业实现最小成本时的 L,K 和 C 的均衡值。 MPL/PL=MPK/PK -1/3 1/3 2/3L K /2=1/3L2/3K -2/3/1 K=L Q=L=800=K C=3L=2400
2 3 1 3

1 3

2 3

第五章 成本理论
一、名词解释 1.总成本:固定成本与可变成本之和 2.机会成本: 经济资源因用于某特定用途而放弃的, 在其他可供替代的使用 机会中能够 获得的最高收益。 会计成本: 会记人员按照税法和企业会计准则的要求, 把与企业已发生的 一切经济活动有关的实际支付,费用等计入成本,这种财务会计意义上的成本。 3.规模经济:产出的增长率大于成本增长率的情形。 4.沉没成本:已经发生且无法收回的费用 5.范围经济:多种产品的联合生产低于单独生产这些产品成本的情形。 6.隐性成本: 企业在生产活动中使用的自有要素的价值, 这种价值由机会成 本来衡量。 8.经济利润:厂商的收益与它的成本之差。 9.成本:商品经济的价值范畴。 成本函数: 在技术水平和要素价格不变的条件下, 成本与产出之间的相互关 系 10.可变成本:随产量变动而变动的成本。 11.固定成本:不随产量增减而变动的成本。 12 边际成本:增加一单位产量所引起的总成本增加量。 13.正常利润:厂商对自己所提供的企业家才能的报酬及支付。

二、计算题: 1. 下表是一张关于短期生产函数 Q ? f ( L, K ) 的产量表: 表 1 短期生产的产量表 L 1 TPL 10 APL MPL (1)在表中填空。 APL=TPL /L MPL=(APL-APL-1)/L (2)根据(1),在一张坐标图上作出 TPL 曲线,在另一张坐标图上作出 APL 曲 线和 MPL 曲线。(提示:为了便于作图与比较,TPL 曲线图的纵坐标的刻度单位大 于 APL 曲线图和 MPL 曲线图。) 2、画图说明短期生产曲线和短期成本曲线之间的关系。(p104) 3.假定某种产品的生产函数为 Q=F(L,K)= LK 2 ,单位资本(r)的价格为 20 元,单位劳动(w)的价格为 5 元。求:产量一定时成本最小化的资本与劳动的 组合比例。 解:MPL=K^2, MPk=2KL MPL/w=MPK/r K^2/5=2KL/20 2K=L K/L=1/2 4. 假定某企业的短期成本函数是 TC(Q)=Q3-5Q2+15Q+66。 (1)指出该短期成本函数中的可变成本部分和不变成本部分; 可变 VC=f(Q)=Q3-5Q2+15Q 不变 FC=66 (2)写出下列相应的函数:(P105) TVC(Q)=VC AC(Q)=TC/Q (平均可变成本)AVC(Q)=VC/Q (平均固定成本)AFC(Q)=FC/Q (边际成本) MC ? ?TC / ?Q ? ?VC / ?Q 5.假定某厂商的边际成本函数 MC=3Q2-30Q+100,且生产 10 单位产量时 的总成本为 1 000。 求:(1)固定成本的值。 TC ? Q^3 ?15Q^2 ? 100Q ? C 10^3 ? 15*10^ 2 ? 100*10 ? C ? 1000 C ? 500 FC ? 500 (2)总成本函数、总可变成本函数,以及平均成本函数、平均可变成本函 数。
?

2 30

3 70

4 100

5 120

6 130

7 135

TC ? Q ^3 ? 15Q ^ 2 ? 100Q ? 500 VC ? Q ^3 ? 15Q ^ 2 ? 100Q ATC ? TC / Q AVC ? VC / Q 6. 已知生产函数 Q=A1/4L1/4K1/2;各要素价格分别为 PA=1,PL=1,PK=2; 假定厂商处于短期生产,且 K=16。 推导:该厂商短期生产的总成本函数和平均成本函数;总可变成本函数和 平均可变成本函数;边际成本函数。 Q=4A1/4L1/4 MPA/PA=MPL/PL -3/4 1/4 1/2 1/4 A L K =1/4A1/4L-3/4K1/2 A=L 1/2 Q=4L L=Q^2/16 TC=PA*A+PL*L+PK*K=2L+32=Q^2/8+32 AC=TC/Q=Q/8+32/Q VC=Q^2/8 AVC=Q/8 MC=TC ’=Q/4

第六章 市场结构与市场类型
一、选择题 1、完全竞争的市场是指( D )

A.市场参与者的购销量只占整个市场交易量的极小一部分 B.市场参与者只能接受价格,而不能影响价格 C.交易的商品是同质的 D.以上全对 2、下列行业中哪一个最接近完全竞争模式( C A.飞机 B.卷烟 C.大米 ) D.汽车

3、在完全竞争的条件下,如果某行业中的厂商的商品价格等于平均成本, 那么( C )

A.新的厂商要进入这个行业 B.原有厂商要退出这个行业 C.既没有厂商进入也没有厂商退出这个行业 D.既有厂商进入也有厂商退出这个行业 4 、假定在某一产量水平上,某厂商的平均成本达到了最小值,这意味着 ( B )

A. 边际成本等于平均成本 C. 厂商获得了最小利润 5、厂商在停止营业点( A. P=AVC C. 企业总损失等于 TFC A )

B.厂商获得了最大利润 D.厂商的超额利润为零

B.TR=TVC D.以上都对

6、假定完全竞争行业内某厂商在目前产量水平下的边际成本、平均成本和 平均收益均等于 1 元,则这家厂商( A A.肯定只得到正常利润 B.肯定没得到最大利润 C.是否得到了最大利润还不能确定 D.肯定得到了最少利润 7、在完全竞争市场上,已知某厂商的产量是 500 单位,总收益是 500 元, 总成本是 800 元,总不变成本是 200 元,边际成本是 1 元,按照利润最大化原 则,他应该( B ) B.停止生产 D.以上任何一个措施都可采取 ) )

A.增加产量 C.减少产量

8、完全竞争市场的厂商短期供给曲线是指( C A.AVC>MC 中的那部分 AVC 曲线 B.AC>MC 中的那部分 AC 曲线 C.MC≥AVC 中的那部分 MC 曲线 D.MC≥AC 中的那部分 MC 曲线

9、当完全竞争厂商(并非整个行业)处于长期均衡时,( D A. B. C. D. P=MR=SMC=SAC P=MR=LMC=LAC P=MR=SMC=LMC,SAC=LAC,但前后二等式,即 P≠SAC P=MR=SMC=LMC=SAC=LAC )



10、成本递增行业的长期供给曲线是( B A.水平直线 C.垂直于横轴的直线

B.自左向右上方倾斜 D.自左向右下方倾斜

二、填空题 1、 表示。 2、 在完全竞争市场上,厂商短期均衡条件是_____P=MC_____________。 在任何市场中,厂商的平均收益曲线可以由他的____需求曲线_______

3、 在一般情况下, 厂商得到的价格低于______平均变动____成本时将停止 营业。 4、 若在最优产出水平 P 超过 AVC,但小于 AC 时,则企业会 续生存__________。 5 、 当 完 全 竞 争 厂 商 和 行 业 都 处 于 长 期 均 衡 时 的 条 件 是 ____P=MR=SMC=LMC=SAC=LAC______________________。 三、名词解释 1、完全竞争:那些不存在足以影响价格的企业或消费者的市场 2 、生产者剩余:卖者得到的量减去其生产成本 四、计算题 1、 完全竞争行业中某厂商的成本函数为 STC=Q3-6Q2+30Q+40,假设产品价 亏损但能继

格为 66 元,求: (1)利润最大化时的产量及利润总额。 P=MC 66=3Q^2-12Q+30 Q=6

? ? TR ? TC ? P * Q ? TC ? 66* 6 ? (6^3 ? 6^3 ? 30* 6 ? 40) ? 176

(2)由于竞争市场供求发生变化,由此决定的新的价格为 30 元,在新的价格 下,厂商是否会发生亏损?如果会,最小的亏损额是多少? P=MC 30=3Q^2-12Q+30 Q=4

? ? TR ? TC ? P * Q ? TC ? 30* 4 ? (4^3 ? 6 * 4^ 2 ? 30* 4 ? 40) ? ?8

厂商会发生亏损,最小亏损额 8 (3)该厂商在什么情况下才会退出该行业(停产)? AVC=VC/Q=Q2-6Q+30=SMC=3Q^2-12Q+30 Q=3 Q=3 时退出 2. 假 设 某 完 全 竞 争 行 业 有 100 个 相 同 的 厂 商 , 每 个 厂 商 的 成 本 函 数 为 STC=0.1Q2+Q+10,求: (1)市场的供给函数。 SMC=0.2Q+1 VC=0.1Q^2+Q Q=0 AVC=0.1Q+1 SMC=AVC=1

AVC=SMC

单个厂商供给 函数

?P ? 0.2Q ? 1( P ? 1) ? .(P ? 1) ?Q ? 0..........









供 (P>=1) (P<1)







Qs=100Q1=100*(P-1)/0.2=500P-500 Qs=0

(2)假设市场需求函数为 Qd=4000-400P,求市场的均衡价格和产量。 QS=Qd 500P-500=4000-400P P=5

3、已知某完全竞争市场中单个厂商的短期成本函数为:

C ? 0.1Q 3 ? 2Q 2 ?15Q ?10
试求厂商的短期供给函数。 AVC=0.1Q2-2Q+15 MC=0.3Q^2-4Q+15 MC=AVC

Q=10

P=AVC=MC=5

?P ? 0.3Q^ 2 ? 4Q ? 15 ? ?Q ? 0 P<5
4、如果某种商品的生产成本函数 TC(Q)与出售收益函数 TR(Q)分别为:

TC ? Q3 ? 2Q2 ? 2Q ? 2
TR ? 29Q ? 2Q2
求: (1)生产并出售该商品的厂商所获利润最大时的产量和利润;

? ? TR ? TC ? ?Q^3 ? 27Q ? 2 ?' ? ?3Q^ 2 ? 27 ? 0 Q?3
? ? ?27 ? 81 ? 2 ? 52 (2)如果该厂商是在完全竞争条件下生产和出售商品(此时,收益函数变 为 TR=(PQ) ,其停止生产临界点(停止营业点)的产量是多少?相应的总成本, 总收益及利润又是多少? MC=TC ’=3Q^2-4Q+2 AVC=Q^2-2Q+2 MC=AVC Q=1 P=AVC=1 TR=1 TC=3 ? ? TR ? TC ? ?2 6、已知完全竞争市场上单个厂商的长期成本函数为 LTC=Q3-20Q2+200Q,市场 的产品价格为 P=600。求: (1)该厂商实现利润最大化时的产量、平均成本和利润各是多少?

解:LMC=3Q^2 - 40Q+200=P=600 Q=20 LAC=Q^2 - 20Q+200=20^2 - 20*20+200=200 ? ? P * Q ? LTC ? 600* 20 ? 20^3 ? 20^3 ? 200* 20 ? 8000 (2)该行业是否处于长期均衡?为什么? 不是处于长期均衡。因为 P 不等于 LAC (3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? 解:LAC=Q^2 - 20Q+200 LAC ’ =2Q-20=0 Q=10 LAC=10^2-200+200=100 ??0 (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段? 答:规模不经济。因为(1)中 Q=20 大于长期均衡时 Q=10,所以此时随产

量增加,LAC 增加,所以厂商处于规模不经济阶段。
六、简答题 1、 家电行业的制造商发现,为了占有市场份额,他们不得不采取一些竞争激烈策略, 包括广告、售后服务、产品外行设计等等。因此,家电行业被认为是完全竞争行业。这种 说法对吗? 2、 “虽然很高的固定成本是厂商亏损的原因,但永远不会是厂商停业的原因。”你同 意这种说法吗? 3、 “在长期均衡点,完全竞争市场中每个厂商的利润都为零。因而,当价格下降时, 所有这些厂商就无法继续经营。”这句话对吗?


更多搜索:西方经济学习题
推荐相关:
网站首页 | 网站地图
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com