9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 数学 >>

高中数学函数的概念的教学设计_图文

高中数学函数的概念的教学设计_图文

《函数的概念》的教学设计 【教材分析】 本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A 版) 》的第一章 1.2.1 函 数的概念。函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字 母表示数开始引进了变量, 使数学从静止的数的计算变成量的变化, 而且变量之间也是相互 联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。在初中已初步探讨了函 数概念、函数关系的表示法以及函数图象的绘制。到了高一再次学习函数,是对函数概念的 再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。函数与 数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。函数的学习也 是今后继续研究数学的基础。在中学不仅学习函数的概念、性质、图象等知识,尤为重要的 是函数的思想要更广泛地渗透到数学研究的全过程。 函数是中学数学的主体内容, 起着承上启下的作用。 函数又是初等数学和高等数学衔接 的枢纽, 特别在应用意识日益加深的今天, 函数的实质是揭示了客观世界中量的相互依存又 互有制约的关系。因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现 实意义。本节的内容较多,分二课时。本课时的内容为:函数的概念、函数的三要素、简单 函数的定义域及值域的求法、区间表示等。 (第二课时内容为:函数概念的复习、较复杂函 数的定义域及值域的求法、分段函数、函数图象等) 【学情分析】 学生在学习本节内容之前, 已经在初中学习过函数的概念, 并且知道可以用函数描述变 量之间的依赖关系。然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为 薄弱, 对函数概念的本质缺乏一定的认识, 对进一步学习函数的图象与性质造成了一定的难 度。初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出 函数概念的本质。例如,对于函数 ?1, 当x是有理数时 如果用运动变化的观点去看它,就不好解释,显得牵强。但 f ( x) ? ? ?0 , 当x是无理数时 如果用集合与对应的观点来解释,就十分自然。因此,用集合与对应的思想来理解函数,对 函数概念的再认识,就很有必要。由于数学符号的抽象性,学生因此会望而却步,从而影响 了学生学习数学的积极性。 高一学生虽然在初中已接触了函数的概念, 但在重新学习它时还 是存在一定的障碍,其中一个原因就是对新引进的函数符号“y=f(x)”不甚其解。教师应在 教学中有意识地挖掘函数符号的审美因素,以美启真。在本节课的教学过程中,教师应该给 学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而 理解问题的本质,归纳总结出结论。 【学法指导】 本节内容的学习要注意运动变化观和集合对应观两个观念下函数定义的对比研究; 注意 借助熟悉的一次函数、二次函数、反比例函数加深对函数这一抽象概念的理解;要重视符号 f(x)的学习,借助具体函数来理解符号 y=f(x)的含义,由具体到抽象,克服由抽象的数学符 号带来的理解困难,从而提高理解和运用数学符号的能力。 【教学目标】 知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数 学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函 数符号的深刻含义;会求一些简单函数的定义域及值域。 能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳 概括的逻辑思维能力; 培养学生联系、 对应、转化的辩证思想;强化“形” 与“数”结合并相互转化的数学思想。 情感目标—— 渗透数学思想和文化,激发学生观察、分析、探求的兴趣和热情;强化 学生参与意识,培养学生严谨的学习态度,获得积极的情感体验;体会在 探究过程中由特殊到一般、从具体到抽象、运动变化、相互联系、相互制 约、相互转化的辩证唯物主义观点;感受数学的简洁美、对称美、数与形 的和谐统一美;树立“数学源于实践,又服务于实践”的数学应用意识。 【教学重点】函数的概念及 y=f(x)的理解与深化。 【教学难点】函数的概念及函数符号 f(x)的理解。 【教学关键】在集合与对应的基础上理解函数的概念。 【教学方法】 以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的 启发式教学为主,变式教学为辅,及引导、探究、讲解、演练相结合。在 教学过程中, 多一点情境和归纳, 多一点探索和发现, 多一点思考和回顾。 通过不同形式的自主学习、探究活动,丰富和改善教与学的方式,体验数 学发现和创造的历程,发展创新意识和实践能力。 在课堂结构上,设计“创设情境——引入课题;引导探求——形成知识; 变式训练——巩固知识;讨论研究——深化知识;总结反思——提高认识 ; 任务后延——自主探究”这样几个主要环节,环环相扣,层层深入,以期 达到教学目标。 设计思想 设计 环节 一、 创设 问题 情境 , 引出 课题 。 设计意图 以实际问题为背景, 以学 生熟悉的情境入手激活学生 的原有知识, 形成学生的 “再 创造” 欲望, 让学生在熟悉的 环境中发现新知识, 使新知识 和原知识形成联系, 同时也体 现了数学的应用价值。 通过问 题 2 这两个用已有概念不太 容易回答的问题, 引发学生的 认知冲突, 有着承上启下的作 用。 既是对初中已学的函数概 念的进一步深入, 又是为下一 步用集合语言来刻画函数的 本质做好伏笔。 以实际问题为载体, 以信 息技术的作图功能为辅助。 在 三个实例的教学中, 重点在于 引导学生体会函数概念中的 对应关系。通过实例 1,体会 用解析式刻画变量之间的对 应关系,关注 t 和 h 的范围; 通过实例 2 体会用图象刻画 变量之间的对应关系,关注 t 和 S 的范围;通过实例 3 体 会用表格刻画变量之间的对 师生活动 教师提出问题 1: 我们在初中学习过函数的概念,它是如何定义的 呢?在初中已经学过哪些函数?(在学生回答的基 础上出示投影) 我们已经学习了一些具体的

网站首页 | 网站地图 | 学霸百科 | 新词新语
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com