9299.net
大学生考试网 让学习变简单
当前位置:首页 >> 初三英语 >>

2018届高三第二轮复习数学(文)(人教版)高考大题专攻练:(11) Word版含解析

2018届高三第二轮复习数学(文)(人教版)高考大题专攻练:(11) Word版含解析

温馨提示: 此套题为 Word 版,请按住 Ctrl,滑动鼠标滚轴,调节 合适的观看比例,答案解析附后。关闭 Word 文档返回原板 块。

高考大题专攻练
11.函数与导数(A 组) 大题集训练,练就慧眼和规范,占领高考制胜点!

1.设函数 f(x)= x3- x2+ax,a∈R. 世纪金榜导学号 46854425 (1)若 x=2 是 f(x)的极值点,求 a 的值,并讨论 f(x)的单调性.

(2)已知函数 g(x)=f(x)- ax2+ ,若 g(x)在区间(0,1)内有零点,求 a 的取值范围. 【解析】(1)f(x)= x3- x2+ax,a∈R,f′(x)=x2-x+a, 因为 x=2 是 f(x)的极值点,所以 f′(2)=4-2+a=0, 解得 a=-2, 代入得 f′(x)=x2-x-2=(x+1)(x-2),令 f′(x)=0, 解得 x=-1 或 x=2. 令 f′(x)>0,解得 x>2 或 x<-1, 所以 f(x)在 x∈(-∞,-1),(2,+∞)时单调递增; 令 f′(x)<0,解得-1<x<2,

所以 f(x)在 x∈(-1,2)时单调递减. (2)g(x)=f(x )ax2+ = x3(1+a)x2+ax+ ,g ′

(x)=x2-(1+a)x+a=(x-1)(x-a). ①当 a≥1 时,x∈(0,1), g′(x)>0 恒成立,g(x)单调递增,又 g(0)= >0, 因此此时函数 g(x)在区间(0,1)内没有零点. ②当 0<a<1 时,x∈(0,a),g′(x)>0,g(x)单调递增, x∈(a,1)时,g′(x)<0,g(x)单调递减,
[来源:学科网]

又 g(0)= >0,因此要使函数 g(x)在区间(0,1)内有零点, 必有 g(1)<0,所以 - (1+a)+a+ <0, 解得 a<-1,舍去. ③当 a≤0 时,x∈(0, 1),g′(x)<0,g(x)单调递减, 又 g(0)= >0,因此要使函数 g(x)在区间(0,1)内有零点, 必有 g( 1)<0,解得 a<-1,满足条件. 综上可得:a 的取值范围是(-∞,-1).
[来源:Zxxk.Com]

[来源:学科网]

2.已知函数 f(x)=xlnx+2,g(x)=x2-mx. (1)求函数 f(x)在[t,t+2](t>0) 上的最小值.

(2)若存在 x0∈ 值范围.

使得 mf′(x0)+g(x0)≥2x0+m 成立,求实数 m 的取

【解析】(1)f′(x)=lnx+1(x>0).令 f′(x)=0,解得 x= , 则 x> ,函数 f(x)单调递增;0<x≤ ,函数 f(x)单调递减. ①t≥ 时,函数 f(x)在[t,t+2](t>0)上单调递增, 因此 x=t 时 ,函数 f(x)取得最小值,f(x)min=f(t)=tlnt+2. ② 0<t< 时 , <t+2, 则 x= 时 , 函 数 f(x) 取 得 极 小 值 即 最 小

值,f(x)min=f

=- +2.

[来源:Zxxk.Com]

综上可得:①t≥ ,x=t 时,函数 f(x)取得最小值,f(x) min=f(t)=tlnt+2. ②0<t< ,x= 时,函数 f(x)取得极小值即最小值,

f(x)min=f

=- +2.

(2) 存 在 x0 ∈

使 得 mf ′ (x0)+g(x0) ≥ 2x0+m 成 立 , ? m ≤

,x∈

,

令 h(x)=

,x∈

.

h′(x)=

,

令 u(x)=x-2lnx+2,x∈

,

则 u′(x)=1- ,可知 x∈

时单调递减;x∈(2,e]时单调递增.
[来源:Zxxk.Com]

且 u(2)=2-2ln2+2>0,u(e)=e>0,因此 u(x)>0.

令 h′(x)=0,解得 x=1,可得:x=1 是函数 h(x)的极小值点,

又h

=

,h(e)=

>h

.

所以 m≤

,所以实数 m 的取值范围是

.

关闭 Word 文档返回原板块
别想一下造出大海,必须先由小河川开始。 成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成! 人若软弱就是自己最大的敌人,人若勇敢就是自己最好的朋友。 成功就是每天进步一点点! 如果要挖井,就要挖到水出为止。 即使爬到最高的山上,一次也只能脚踏实地地迈一步。 今天拼搏努力,他日谁与争锋。 在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了 不起;只有在你害怕的时候还去斗牛才是真正的了不起。 行动不一定带来快乐,但无行动决无快乐。 只有一条路不能选择--那就是放弃之路; 只有一条路不能拒绝--那就是成长之路。

坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的。 只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧。" 用今天的泪播种,收获明天的微笑。 人生重要的不是所站的位置,而是所朝的方向。 弱者只有千难万难,而勇者则能披荆斩棘;愚者只有声声哀叹,智者却有千路万 路。 坚持不懈,直到成功! 最淡的墨水也胜过最强的记忆。 凑合凑合,自己负责。 有志者自有千计万计,无志者只感千难万难。 我中考,我自信!我尽力我无悔! 听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而 行的是智者。 相信自己能突破重围。 努力造就实力,态度决定高度。 把自己当傻瓜,不懂就问,你会学的更多。 人的活动如果没有理想的鼓舞,就会变得空虚而渺小。 安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久。 眉毛上的汗水和眉毛下的泪水,你必须选择一样! 若不给自己设限,则人生中就没有限制你发挥的藩篱。 相信自己我能行! 任何业绩的质变都来自于量变的积累。 明天的希望,让我们忘了今天的痛苦。 世界上最重要的事情,不在于我们身在何处,而在于我们朝着什么方向走。

爱拼才会赢努力拼搏,青春无悔! 脚踏实地地学习。 失去金钱的人损失甚少,失去健康的人损失极多,失去勇气的人损失一切。 在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。 旁观者的姓名永远爬不到比赛的计分板上。 觉得自己做的到和不做的到,其实只在一念之间。 人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海 绵才能吸收新的源泉。 没有等出来的辉煌;只有走出来的美丽。 我成功,因为我志在成功! 记住!只有一个时间是最重要的,那就是现在。 回避现实的人,未来将更不理想。 昆仑纵有千丈雪,我亦誓把昆仑截。 如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 没有热忱,世间将不会进步。 彩虹总在风雨后,阳光总在乌云后,成功总在失败后。 如果我们都去做我们能力做得到的事,我们真会叫自己大吃一惊。 外在压力增强时,就要增强内在的动力。 如果有山的话,就有条越过它的路。 临中考,有何惧,看我今朝奋力拼搏志!让雄心与智慧在六月闪光! 成功绝不喜欢会见懒汉,而是唤醒懒汉。 成功的人是跟别人学习经验,失败的人是跟自己学习经验。 抱最大的希望,为最大的努力,做最坏的打算。 欲望以提升热忱,毅力以磨平高山。

向理想出发!别忘了那个约定!自信努力坚持坚强! 拼搏今朝,收获六月! 成功就是屡遭挫折而热情不减! 我相信我和我的学习能力! 生活之灯因热情而点燃,生命之舟因拼搏而前行。 好好使用我们的大脑,相信奇迹就会来临! 我们没有退缩的选择,只有前进的使命。 明天是世上增值最快的一块土地,因它充满了希望。 好好扮演自己的角色,做自己该做的事。 在世界的历史中,每一位伟大而高贵的时刻都是某种热情的胜利。 困难,激发前进的力量;挫折,磨练奋斗的勇气;失败,指明成功的方向。 拥有梦想只是一种智力,实现梦想才是一种能力。 什么都可以丢,但不能丢脸;什么都可以再来,唯独生命不能再来;什么都可以 抛去,唯有信仰不能抛去;什么都可以接受,唯独屈辱不能接受。 今朝勤学苦,明朝跃龙门。 成功是别人失败时还在坚持。 踏平坎坷成大道,推倒障碍成浮桥,熬过黑暗是黎明。 每天早上醒来后,你荷包里的最大资产是 24 个小时。--你生命宇宙中尚未制造 的材料。 我奋斗了,我无悔了。 此时不搏何时搏?全力以赴,铸我辉煌!


网站首页 | 网站地图 | 学霸百科
All rights reserved Powered by 大学生考试网 9299.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com